Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Hum Brain Mapp ; 44(10): 3998-4010, 2023 07.
Article in English | MEDLINE | ID: covidwho-2319814

ABSTRACT

There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.


Subject(s)
COVID-19 , White Matter , Humans , Feasibility Studies , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods
2.
Eur J Neurol ; 30(4): 970-981, 2023 04.
Article in English | MEDLINE | ID: covidwho-2258235

ABSTRACT

BACKGROUND AND PURPOSE: Post-COVID-19 condition (PCC) has high impact on quality of life, with myalgia and fatigue affecting at least 25% of PCC patients. This case-control study aims to noninvasively assess muscular alterations via quantitative muscle magnetic resonance imaging (MRI) as possible mechanisms for ongoing musculoskeletal complaints and premature exhaustion in PCC. METHODS: Quantitative muscle MRI was performed on a 3 Tesla MRI scanner of the whole legs in PCC patients compared to age- and sex-matched healthy controls, including a Dixon sequence to determine muscle fat fraction (FF), a multi-echo spin-echo sequence for quantitative water mapping reflecting putative edema, and a diffusion-weighted spin-echo echo-planar imaging sequence to assess microstructural alterations. Clinical examination, nerve conduction studies, and serum creatine kinase were performed in all patients. Quantitative muscle MRI results were correlated to the results of the 6-min walk test and standardized questionnaires assessing quality of life, fatigue, and depression. RESULTS: Twenty PCC patients (female: n = 15, age = 48.8 ± 10.1 years, symptoms duration = 13.4 ± 4.2 months, body mass index [BMI] = 28.8 ± 4.7 kg/m2 ) were compared to 20 healthy controls (female: n = 15, age = 48.1 ± 11.1 years, BMI = 22.9 ± 2.2 kg/m2 ). Neither FF nor T2 revealed signs of muscle degeneration or inflammation in either study groups. Diffusion tensor imaging (DTI) revealed reduced mean, axial, and radial diffusivity in the PCC group. CONCLUSIONS: Quantitative muscle MRI did not depict any signs of ongoing inflammation or dystrophic process in the skeletal muscles in PCC patients. However, differences observed in muscle DTI depict microstructural abnormalities, which may reflect potentially reversible fiber hypotrophy due to deconditioning. Further longitudinal and interventional studies should prove this hypothesis.


Subject(s)
COVID-19 , Diffusion Tensor Imaging , Humans , Female , Adult , Middle Aged , Case-Control Studies , Quality of Life , Magnetic Resonance Imaging/methods , Muscle, Skeletal/pathology
3.
Ann Clin Transl Neurol ; 10(2): 195-203, 2023 02.
Article in English | MEDLINE | ID: covidwho-2253606

ABSTRACT

OBJECTIVE: This research aims to study structural brain changes in patients with persistent olfactory dysfunctions after coronavirus disease 2019 (COVID-19). METHODS: COVID-19 patients were evaluated using T1-weighted and diffusion tensor imaging (DTI) on a 3T MRI scanner, 9.94 ± 3.83 months after COVID-19 diagnosis. Gray matter (GM) voxel-based morphometry was performed using FSL-VBM. Voxelwise statistical analysis of the fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity was carried out with the tract-based spatial statistics in the olfactory system. The smell identification test (UPSIT) was used to classify patients as normal olfaction or olfactory dysfunction groups. Intergroup comparisons between GM and DTI measures were computed, as well as correlations with the UPSIT scores. RESULTS: Forty-eight COVID-19 patients were included in the study. Twenty-three were classified as olfactory dysfunction, and 25 as normal olfaction. The olfactory dysfunction group had lower GM volume in a cluster involving the left amygdala, insular cortex, parahippocampal gyrus, frontal superior and inferior orbital gyri, gyrus rectus, olfactory cortex, caudate, and putamen. This group also showed higher MD values in the genu of the corpus callosum, the orbitofrontal area, the anterior thalamic radiation, and the forceps minor; and higher RD values in the anterior corona radiata, the genu of the corpus callosum, and uncinate fasciculus compared with the normal olfaction group. The UPSIT scores for the whole sample were negatively associated with both MD and RD values (p-value ≤0.05 FWE-corrected). INTERPRETATION: There is decreased GM volume and increased MD in olfactory-related regions explaining prolonged olfactory deficits in post-acute COVID-19 patients.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Smell , Diffusion Tensor Imaging/methods , COVID-19 Testing , COVID-19/complications , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology
4.
Eur Neuropsychopharmacol ; 68: 1-10, 2023 03.
Article in English | MEDLINE | ID: covidwho-2244051

ABSTRACT

Cognitive impairment represents a leading residual symptom of COVID-19 infection, which lasts for months after the virus clearance. Up-to-date scientific reports documented a wide spectrum of brain changes in COVID-19 survivors following the illness's resolution, mainly related to neurological and neuropsychiatric consequences. Preliminary insights suggest abnormal brain metabolism, microstructure, and functionality as neural under-layer of post-acute cognitive dysfunction. While previous works focused on brain correlates of impaired cognition as objectively assessed, herein we investigated long-term neural correlates of subjective cognitive decline in a sample of 58 COVID-19 survivors with a multimodal imaging approach. Diffusion Tensor Imaging (DTI) analyses revealed widespread white matter disruption in the sub-group of cognitive complainers compared to the non-complainer one, as indexed by increased axial, radial, and mean diffusivity in several commissural, projection and associative fibres. Likewise, the Multivoxel Pattern Connectivity analysis (MVPA) revealed highly discriminant patterns of functional connectivity in resting-state among the two groups in the right frontal pole and in the middle temporal gyrus, suggestive of inefficient dynamic modulation of frontal brain activity and possible metacognitive dysfunction at rest. Beyond COVID-19 actual pathophysiological brain processes, our findings point toward brain connectome disruption conceivably translating into clinical post-COVID cognitive symptomatology. Our results could pave the way for a potential brain signature of cognitive complaints experienced by COVID-19 survivors, possibly leading to identify early therapeutic targets and thus mitigating its detrimental long-term impact on quality of life in the post-COVID-19 stages.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Diffusion Tensor Imaging/methods , Quality of Life , COVID-19/complications , Brain/physiology , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognition , Survivors
5.
Theranostics ; 13(2): 724-735, 2023.
Article in English | MEDLINE | ID: covidwho-2203055

ABSTRACT

Background and purpose: Long COVID with regard to the neurological system deserves more attention, as a surge of treated patients are being discharged from the hospital. As the dynamic changes in white matter after two years remain unknown, this characteristic was the focus of this study. Methods: We investigated 17 recovered COVID-19 patients at two years after discharge. Diffusion tensor imaging, neurite orientation dispersion and density imaging were performed to identify white matter integrity and changes from one to two years after discharge. Data for 13 revisited healthy controls were collected as a reference. Subscales of the Wechsler Intelligence scale were used to assess cognitive function. Repeated-measures ANOVA was used to detect longitudinal changes in 17 recovered COVID-19 patients and 13 healthy controls after one-year follow-up. Correlations between diffusion metrics, cognitive function, and other clinical characteristics (i.e., inflammatory factors) were also analyzed. Results: Longitudinal analysis showed the recovery trends of large-scale brain regions, with small-scale brain region deterioration from one year to two years after SARS-CoV-2 infection. However, persistent white matter abnormalities were noted at two years after discharge. Longitudinal changes of cognitive function showed no group difference. But cross-sectional cognitive difference between recovered COVID-19 patients and revisited HCs was detected. Inflammation levels in the acute stage correlated positively with white matter abnormalities and negatively with cognitive function. Moreover, the more abnormal the white matter was at two years, the greater was the cognitive deficit present. Conclusion: Recovered COVID-19 patients showed longitudinal recovery trends of white matter. But also had persistent white matter abnormalities at two years after discharge. Inflammation levels in the acute stage may be considered predictors of cognition and white matter integrity, and the white matter microstructure acts as a biomarker of cognitive function in recovered COVID-19 patients. These findings provide an objective basis for early clinical intervention.


Subject(s)
COVID-19 , White Matter , Humans , Follow-Up Studies , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Brain/diagnostic imaging , Inflammation
6.
Ups J Med Sci ; 1272022.
Article in English | MEDLINE | ID: covidwho-1955653

ABSTRACT

Background: Neurological and psychiatric manifestations related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are widely recognised. Standard magnetic resonance imaging (MRI) investigations are normal in 40-80% of symptomatic patients, eventually delaying appropriate treatment when MRI is unrevealing any structural changes. The aim of this study is to investigate white matter abnormalities during an early stage of post-COVID-19 (coronavirus disease 2019) encephalitis while conventional MRI was normal. Methods: A patient with post-COVID-19 autoimmune encephalitis was investigated by serial MRIs and diffusion tensor imaging (DTI). Ten healthy control individuals (HC) were utilised as a control group for the DTI analysis. Major projection, commissural and association white matter pathways were reconstructed, and multiple diffusion parameters were analysed and then compared to the HC average using a z-test for serial examinations. Results: Eleven days after the onset of neurological symptoms, DTI revealed early white matter changes, compared with HC, when standard MRI was normal. On day 68, DTI showed multiple white matter lesions compared with HC, visible at this time also by the MRI images, indicating inflammatory changes in different association and projection white matter pathways. Conclusion: We confirm a limitation in the sensitivity of conventional MRI at the acute setting of post-COVID-19 autoimmune encephalitis. A complementary DTI investigation could be a valuable diagnostic tool in early therapeutic decisions concerning COVID-19-related neurological symptoms.


Subject(s)
COVID-19 , Encephalitis , COVID-19/complications , Diffusion Tensor Imaging/methods , Encephalitis/diagnostic imaging , Hashimoto Disease , Humans , Magnetic Resonance Imaging/methods , SARS-CoV-2
8.
Neuroimage Clin ; 34: 103002, 2022.
Article in English | MEDLINE | ID: covidwho-1821425

ABSTRACT

PURPOSE: Cerebral amyloid angiopathy (CAA) is a common neuropathological finding and clinical entity that occurs independently and with co-existent Alzheimer's disease (AD) and small vessel disease. We compared diffusion tensor imaging (DTI) metrics of the fornix, the primary efferent tract of the hippocampus between CAA, AD and Mild Cognitive Impairment (MCI) and healthy controls. METHODS: Sixty-eight healthy controls, 32 CAA, 21 AD, and 26 MCI patients were recruited at two centers. Diffusion tensor images were acquired at 3 T with high spatial resolution and fluid-attenuated inversion recovery (FLAIR) to suppress cerebrospinal fluid (CSF) and minimize partial volume effects on the fornix. The fornix was delineated with deterministic tractography to yield mean diffusivity (MD), axial diffusivity (AXD), radial diffusivity (RD), fractional anisotropy (FA) and tract volume. Volumetric measurements of the hippocampus, thalamus, and lateral ventricles were obtained using T1-weighted MRI. RESULTS: Diffusivity (MD, AXD, and RD) of the fornix was highest in AD followed by CAA compared to controls; the MCI group was not significantly different from controls. FA was similar between groups. Fornix tract volume was âˆ¼ 30% lower for all three patient groups compared to controls, but not significantly different between the patient groups. Thalamic and hippocampal volumes were preserved in CAA, but lower in AD and MCI compared to controls. Lateral ventricular volumes were increased in CAA, AD and MCI. Global cognition, memory, and executive function all correlated negatively with fornix diffusivity across the combined clinical group. CONCLUSION: There were significant diffusion changes of the fornix in CAA, AD and MCI compared to controls, despite relatively intact thalamic and hippocampal volumes in CAA, suggesting the mechanisms for fornix diffusion abnormalities may differ in CAA compared to AD and MCI.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Cognitive Dysfunction , Alzheimer Disease/pathology , Anisotropy , Cognitive Dysfunction/complications , Cognitive Dysfunction/diagnostic imaging , Diffusion Tensor Imaging/methods , Fornix, Brain/diagnostic imaging , Fornix, Brain/pathology , Humans
9.
J Med Case Rep ; 16(1): 80, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1708646

ABSTRACT

BACKGROUND: The coronavirus disease 2019 pandemic has resulted in a growing population of individuals who experience a wide range of persistent symptoms referred to as "long COVID." Symptoms include neurocognitive impairment and fatigue. Two potential mechanisms could be responsible for these long-term unremitting symptoms: hypercoagulability, which increases the risk of blood vessel occlusion, and an uncontrolled continuous inflammatory response. Currently, no known treatment is available for long COVID. One of the options to reverse hypoxia, reduce neuroinflammation, and induce neuroplasticity is hyperbaric oxygen therapy. In this article, we present the first case report of a previously healthy athletic individual who suffered from long COVID syndrome treated successfully with hyperbaric oxygen therapy. CASE PRESENTATION: A previously healthy 55-year-old Caucasian man presented 3 months after severe coronavirus disease 2019 infection with long COVID syndrome. His symptoms included a decline in memory, multitasking abilities, energy, breathing, and physical fitness. After evaluation that included brain perfusion magnetic resonance imaging, diffusion tensor imaging, computerized cognitive tests, and cardiopulmonary test, he was treated with hyperbaric oxygen therapy. Each session included exposure to 90 minutes of 100% oxygen at 2 atmosphere absolute pressure with 5-minute air breaks every 20 minutes for 60 sessions, 5 days per week. Evaluation after completing the treatment showed significant improvements in brain perfusion and microstructure by magnetic resonance imaging and significant improvement in memory with the most dominant effect being on nonverbal memory, executive functions, attention, information procession speed, cognitive flexibility, and multitasking. The improved cognitive functions correlated with the increased cerebral blood flow in brain regions as measured by perfusion magnetic resonance imaging. With regard to physical capacity, there was a 34% increase in the maximum rate of oxygen consumed during exercise and a 44% improvement in forced vital capacity. The improved physical measurements correlated with the regain of his pre-COVID physical capacity. CONCLUSIONS: We report the first case of successfully treated long COVID symptoms with hyperbaric oxygen therapy with improvements in cognition and cardiopulmonary function. The beneficial effects of hyperbaric oxygen shed additional light on the pathophysiology of long COVID. As this is a single case report, further prospective randomized control studies are needed.


Subject(s)
COVID-19 , Hyperbaric Oxygenation , COVID-19/complications , Diffusion Tensor Imaging , Humans , Male , Middle Aged , Oxygen , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
10.
Br J Radiol ; 95(1129): 20210290, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1603309

ABSTRACT

OBJECTIVE: Early detection of peripheral neuropathy is extremely important as leprosy is one of the treatable causes of peripheral neuropathy. The study was undertaken to assess the role of diffusion tensor imaging (DTI) in ulnar neuropathy in leprosy patients. METHODS: This was a case-control study including 38 patients (72 nerves) and 5 controls (10 nerves) done between January 2017 and June 2019. Skin biopsy proven cases of leprosy, having symptoms of ulnar neuropathy (proven on nerve conduction study) were included. MRI was performed on a 3 T MR system. Mean cross-sectional area, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of ulnar nerve at cubital tunnel were calculated. Additional ancillary findings and appearance of base sequences were evaluated. RESULTS: Ulnar nerve showed thickening with altered T2W signal in all the affected nerves, having an average cross-sectional area of 0.26 cm2. Low FA with mean of 0.397 ± 0.19 and high ADC with mean of 1.28 ± 0.427 x 10 -3 mm2/s of ulnar nerve in retrocondylar groove was obtained. In the control group, mean cross-sectional area was 0.71cm2 with mean FA and ADC of 0.53 ± 0.088 and 1.03 ± 0.24 x 10 -3 mm2/s respectively. Statistically no significant difference was seen in diseased and control group. Cut-off to detect neuropathy for FA and ADC is 0.4835 and 1.1020 × 10 -3 mm2/s respectively. CONCLUSION: DTI though is challenging in peripheral nerves, however, is proving to be a powerful complementary tool for assessment of peripheral neuropathy. Our study validates its utility in infective neuropathies. ADVANCES IN KNOWLEDGE: 1. DTI is a potential complementary tool for detection of peripheral neuropathies and can be incorporated in standard MR neurography protocol.2. In leprosy-related ulnar neuropathy, altered signal intensity with thickening or abscess of the nerve is appreciated along with locoregional nodes and secondary denervation changes along with reduction of FA and rise in ADC value.3. Best cut-offs obtained in our study for FA and ADC are 0.4835 and 1.1020 × 10 -3 mm2/s respectively.


Subject(s)
Diffusion Tensor Imaging , Leprosy/complications , Peripheral Nervous System Diseases/diagnostic imaging , Ulnar Nerve/diagnostic imaging , Adult , Case-Control Studies , Early Diagnosis , Female , Humans , Male , Neuroimaging , Peripheral Nervous System Diseases/etiology
11.
Brain ; 145(5): 1830-1838, 2022 06 03.
Article in English | MEDLINE | ID: covidwho-1594202

ABSTRACT

There is growing evidence that severe acute respiratory syndrome coronavirus 2 can affect the CNS. However, data on white matter and cognitive sequelae at the 1-year follow-up are lacking. Therefore, we explored these characteristics in this study. We investigated 22 recovered coronavirus disease 2019 (COVID-19) patients and 21 matched healthy controls. Diffusion tensor imaging, diffusion kurtosis imaging and neurite orientation dispersion and density imaging were performed to identify white matter changes, and the subscales of the Wechsler Intelligence scale were used to assess cognitive function. Correlations between diffusion metrics, cognitive function and other clinical characteristics were then examined. We also conducted subgroup analysis based on patient admission to the intensive care unit. The corona radiata, corpus callosum and superior longitudinal fasciculus had a lower volume fraction of intracellular water in the recovered COVID-19 group than in the healthy control group. Patients who had been admitted to the intensive care unit had lower fractional anisotropy in the body of the corpus callosum than those who had not. Compared with the healthy controls, the recovered COVID-19 patients demonstrated no significant decline in cognitive function. White matter tended to present with fewer abnormalities for shorter hospital stays and longer follow-up times. Lower axonal density was detected in clinically recovered COVID-19 patients after 1 year. Patients who had been admitted to the intensive care unit had slightly more white matter abnormalities. No significant decline in cognitive function was found in recovered COVID-19 patients. The duration of hospital stay may be a predictor for white matter changes at the 1-year follow-up.


Subject(s)
COVID-19 , White Matter , Anisotropy , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Follow-Up Studies , Humans , White Matter/diagnostic imaging
12.
J Adolesc ; 91: 110-118, 2021 08.
Article in English | MEDLINE | ID: covidwho-1340503

ABSTRACT

INTRODUCTION: COVID-19 has resulted in major life changes to the majority of the world population, particularly adolescents, with social-distancing measures such as home-based schooling likely to impact sleep quality. Increased worry is also likely considering the substantial financial, educational and health concerns accompanying COVID-19. White matter (WM) integrity has been shown to be associated with anxiety and depression symptoms, including worry, as well being closely associated with sleep quality. This study aimed to investigate the associations between pre-COVID sleep quality, WM structural integrity and levels of worry and rumination about COVID. METHODS: N = 30 adolescent participants from Queensland, Australia, completed diffusion tensor imaging (DTI) scanning pre-COVID, the Pittsburgh Sleep Quality Index (PSQI) pre and during COVID, and 9 items designed to measure 3 constructs, perceived impact of COVID, general worry, and COVID-specific worry and rumination. RESULTS: Sleep quality (PSQI total) was significantly poorer during COVID compared with pre-COVID. Sleep onset latency measured pre-COVID was significantly associated with COVID-specific worry and rumination. While the structural integrity of a number of WM tracts (measured pre-COVID) were found to be significantly associated with COVID-specific worry and rumination. Follow-up regression analysis using a model including pre-COVID sleep onset latency, structural integrity of the posterior limb of the internal capsule (PLIC), gender and change in PSQI explained a significant 47% of the variance in COVID-specific worry and rumination. CONCLUSIONS: These findings suggest that adolescents with poor sleep quality and perturbed WM integrity may be at risk of heightened reactivity to future stressful events and interventions should focus on improving sleep onset latency.


Subject(s)
Anxiety , COVID-19 , Pandemics , Sleep , White Matter , Adolescent , Anxiety/epidemiology , COVID-19/epidemiology , COVID-19/psychology , Diffusion Tensor Imaging , Humans , Predictive Value of Tests , Queensland/epidemiology , White Matter/diagnostic imaging
13.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1291498

ABSTRACT

BACKGROUNDThe coronavirus disease 2019 (COVID-19) rapidly progressed to a global pandemic. Although some patients totally recover from COVID-19 pneumonia, the disease's long-term effects on the brain still need to be explored.METHODSWe recruited 51 patients with 2 subtypes of COVID-19 (19 mild and 32 severe) with no specific neurological manifestations at the acute stage and no obvious lesions on the conventional MRI 3 months after discharge. Changes in gray matter morphometry, cerebral blood flow (CBF), and white matter (WM) microstructure were investigated using MRI. The relationship between brain imaging measurements and inflammation markers was further analyzed.RESULTSCompared with healthy controls, the decrease in cortical thickness/CBF and the changes in WM microstructure were more severe in patients with severe disease than in those with mild disease, especially in the frontal and limbic systems. Furthermore, changes in brain microstructure, CBF, and tract parameters were significantly correlated (P < 0.05) with the inflammatory markers C-reactive protein, procalcitonin, and interleukin 6.CONCLUSIONIndirect injury related to inflammatory storm may damage the brain, altering cerebral volume, CBF, and WM tracts. COVID-19-related hypoxemia and dysfunction of vascular endothelium may also contribute to neurological changes. The abnormalities in these brain areas need to be monitored during recovery, which could help clinicians understand the potential neurological sequelae of COVID-19.FUNDINGNatural Science Foundation of China.


Subject(s)
COVID-19/diagnostic imaging , Cerebrovascular Circulation/physiology , SARS-CoV-2 , Aged , Brain/blood supply , Brain/diagnostic imaging , Brain/pathology , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/physiopathology , Case-Control Studies , China/epidemiology , Diffusion Tensor Imaging , Echo-Planar Imaging , Female , Follow-Up Studies , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Imaging, Three-Dimensional , Inflammation Mediators/blood , Interleukin-6/blood , Male , Middle Aged , Neuroimaging , Pandemics , Procalcitonin/blood , Severity of Illness Index , Time Factors , White Matter/diagnostic imaging , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL